A Taylor series approach to pricing and implied vol for LSV models
نویسندگان
چکیده
Using classical Taylor series techniques, we develop a unified approach to pricing and implied volatility for European-style options in a general local-stochastic volatility setting. Our price approximations require only a normal CDF and our implied volatility approximations are fully explicit (ie, they require no special functions, no infinite series and no numerical integration). As such, approximate prices can be computed as efficiently as Black-Scholes prices, and approximate implied volatilities can be computed nearly instantaneously.
منابع مشابه
A TAYLOR SERIES APPROACH FOR SOLVING LINEAR FRACTIONAL DECENTRALIZED BI-LEVEL MULTI-OBJECTIVE DECISION-MAKING UNDER FUZZINESS
This paper presents a Taylor series approach for solving linear fractional de-centralized bi-level multi-objective decision-making (LFDBL-MODM) problems with asingle decision maker at the upper level and multiple decision makers at the lower level.In the proposed approach, the membership functions associated with each objective(s) ofthe level(s) of LFDBL-MODM are transformed by using a Taylor s...
متن کاملNUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION
In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.
متن کاملOption Pricing for Stochastic Volatility Models: Vol-of-Vol Expansion
In this article, we propose an analytical approximation for the pricing of European options for some lognormal stochastic volatility models. This approximation is a second-order Taylor series expansion of the Fourier transform with respect to the "volatility of volatility". We give, using these formulas, a new method of variance reduction for the Monte-Carlo simulation of the trajectories of th...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملStochastic Models for Pricing Weather Derivatives using Constant Risk Premium
‎Pricing weather derivatives is becoming increasingly useful‎, ‎especially in developing economies‎. ‎We describe a statistical model based approach for pricing weather derivatives by modeling and forecasting daily average temperatures data which exhibits long-range dependence‎. ‎We pre-process the temperature data by filtering for seasonality and volatility an...
متن کامل